Automatic estimation of decoding parameters using large-margin iterative linear programming
نویسندگان
چکیده
The decoding parameters in automatic speech recognition — grammar factor and word insertion penalty — are usually determined by performing a grid search on a development set. Recently, we cast their estimation as a convex optimization problem, and proposed a solution using an iterative linear programming algorithm. However, the solution depends on how well the development data set matches with the test set. In this paper, we further investigates an improvement on the generalization property of the solution by using large margin training within the iterative linear programming framework. Empirical evaluation on the WSJ0 5K speech recognition tasks shows that the recognition performance of the decoding parameters found by the improved algorithm using only a subset of the acoustic model training data is even better than that of the decoding parameters found by grid search on the development data, and is close to the performance of those found by grid search on the test set.
منابع مشابه
Min-max discriminative training of decoding parameters using iterative linear programming
In automatic speech recognition, the decoding parameters — grammar factor and word insertion penalty — are usually handtuned to give the best recognition performance. This paper investigates an automatic procedure to determine their values using an iterative linear programming (LP) algorithm. LP naturally implements discriminative training by mapping linear discriminants into LP constraints. A ...
متن کاملA General Approximation-Optimization Approach to Large Margin Estimation of HMMs
The most successful modeling approach to automatic speech recognition (ASR) is to use a set of hidden Markov models (HMMs) as the acoustic models for subword or whole-word speech units and to use the statistical N-gram model as language model for words and/or word classes in sentences. All the model parameters, including HMMs and N-gram models, are estimated from a large amount of training data...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملA Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm
In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...
متن کاملGraph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes
The goal of the present paper is the derivation of a framework for the finite-length analysis of message-passing iterative decoding of low-density parity-check codes. To this end we introduce the concept of graph-cover decoding. Whereas in maximum-likelihood decoding all codewords in a code are competing to be the best explanation of the received vector, under graph-cover decoding all codewords...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009